

The Lava Diagram
(Wrap-Up of

Undecidability)

RE
(Lava Diagram Problem Tips)

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

How do you
identify an

RE
language?

RE
(Lava Diagram Problem Tips)

● You’ve seen two examples of RE (but not R)
problems so far: ATM, HALT. They both have this
form:
● L = {⟨M,w⟩ | /* something about M’s behavior

on w */}
● You’ve also seen how we used the Trickster

approach to prove both are undecidable (not in R).
● You may have found yourself thinking, “Couldn’t I

always just use Trickster on any language of TMs
to show it’s undecidable?” And the answer, in fact,
is yes! (with a couple caveats)

Rice’s Theorem
(Lava Diagram Problem Tips)

● Any language that consists of strings that are TM code,
and filters those TMs based on a criteria that has anything
to do with the TM’s language or behavior, is undecidable.*
● * In other words, not in R; at best in RE, maybe not even that.

● Meaning languages matching these sorts of templates will
always be undecidable:
● L = {⟨M,w⟩ | /* something about M’s behavior on w */}
● L = {⟨M⟩ | /* something about M’s behavior */}
● L = {⟨M⟩ | /* something about M’s language */}
● L = {⟨M1, M2⟩ | /* something comparing M1 and M2’s

languages or behaviors */}
● Example criteria: “M accepts at least one string,” “M’s language

is finite,” “M loops on w”

Rice’s Theorem
(Lava Diagram Problem Tips)

● Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM’s language or behavior, is undecidable.

● Caveat 1: not all languages of the form L = {⟨M⟩ | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

● Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

● L1 = {⟨M,w⟩ | the string ⟨M⟩ has more a’s than the string w}

● L2 = {⟨M⟩ | the string ⟨M⟩ has odd length}

● Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

● Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just and Σ*, respectively). Rice’s Theorem doesn’t ∅
apply unless the criteria actually “filters” some in/some out.

Rice’s Theorem
(Lava Diagram Problem Tips)

● Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM’s language or behavior, is undecidable.

● Caveat 1: not all languages of the form L = {⟨M⟩ | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

● Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

● L1 = {⟨M,w⟩ | the string ⟨M⟩ has more a’s than the string w}

● L2 = {⟨M⟩ | the string ⟨M⟩ has odd length}

● Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

● Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just and Σ*, respectively). Rice’s Theorem doesn’t ∅
apply unless the criteria actually “filters” some in/some out.

Quick check:
How would you
categorize L

1
 in

the Lava Diagram?

Quick check:
How would you
categorize L

1
 in

the Lava Diagram?

Rice’s Theorem
(Lava Diagram Problem Tips)

● Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM’s language or behavior, is undecidable.

● Caveat 1: not all languages of the form L = {⟨M⟩ | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

● Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

● L1 = {⟨M,w⟩ | the string ⟨M⟩ has more a’s than the string w}

● L2 = {⟨M⟩ | the string ⟨M⟩ has odd length}

● Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

● Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just and Σ*, respectively). Rice’s Theorem doesn’t ∅
apply unless the criteria actually “filters” some in/some out.

Quick check:
How would you
categorize L

2
 in

the Lava Diagram?

Quick check:
How would you
categorize L

2
 in

the Lava Diagram?

Beyond RE

How Many Problems Are
Outside the Reach of Turing

Machines?
● It’s sad to think about problems that no TM

can even recognize! How many are there?
Hopefully only a few!

● A TM is fundamentally just a string (a piece
of code). Let’s say we can interpret any
string as a TM (if not syntactically correct
according to some TM code system, we’ll just
say it is a TM that always rejects).

● So the number of TMs that exist is |Σ*| (the
count of all possible strings).

How Many Problems Are
Outside the Reach of Turing

Machines?
● It’s sad to think about problems that no TM

can even recognize! How many are there?
Hopefully only a few!

● A TM is fundamentally just a string (a piece
of code). Let’s say we can interpret any
string as a TM (if not syntactically correct
according to some TM code system, we’ll just
say it is a TM that always rejects).

● So the number of TMs that exist is |Σ*| (the
count of all possible strings).

Quick check:
How many

languages are
there? Express as
the cardinality of

some set.

Quick check:
How many

languages are
there? Express as
the cardinality of

some set.

How Many Problems Are
Outside the Reach of Turing

Machines?
● Sadly, Cantor’s Theorem says |Σ*| < ℘(|Σ*|).
● Not nearly enough Turing machines to go

around for all the languages that exist.
● So there are many problems (languages) that

we can’t solve with TMs.

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

What is
outside RE?

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

● Languages L that are outside RE are
those where:
● We cannot even build a recognizer TM M,

where (ℒM) = L.
● We cannot build a verifier for L.

– i.e., there is no finite-length certificate/hint
that proves a string w is in L.

● Fun fact: this class includes all the
complements of undecidable RE languages.

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

What makes
a language

non-RE?

In our discussion of
verifiers, we’ve

brushed up against
one reason a

language could be
unverifiable: it’s

inherently hard to
provide a piece of

evidence to prove a
negative.

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

What makes
a language

non-RE?

In our discussion of
verifiers, we’ve

brushed up against
one reason a

language could be
unverifiable: it’s

inherently hard to
provide a piece of

evidence to prove a
negative.

The complements
of undecidable

RE languages are
always outside of

RE.

ATM

HALT

Regular
Languages CFLs

All Languages

R RE

ATM

HALT

What makes
a language

non-RE?

In our discussion of
verifiers, we’ve

brushed up against
one reason a

language could be
unverifiable: it’s

inherently hard to
provide a piece of

evidence to prove a
negative.

The complements
of undecidable

RE languages are
always outside of

RE.

ATM

HALT

Certificate (hint): n,
the number of steps of

M(w) execution until we
will observe M halt and

accept or reject w.

Certificate (hint): n,
the number of steps of

M(w) execution until we
will observe M halt and

accept or reject w.

Certificate (hint): n, the
number of steps of M(w)

execution until we
observe…what? Not

halting?? A step count
doesn’t work. :-(

Certificate (hint): n, the
number of steps of M(w)

execution until we
observe…what? Not

halting?? A step count
doesn’t work. :-(

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

● Example languages:
● The complements of undecidable RE

languages.
● EQTM = {⟨M1, M2⟩ | where (ℒM1) = (ℒM1) }

● {⟨M⟩ | M loops on at least five strings }

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

● Example languages:
● The complements of undecidable RE

languages.
● EQTM = {⟨M1, M2⟩ | where (ℒM1) = (ℒM1) }

● L = {⟨M⟩ | M loops on at least five strings }

Quick check: A very
similar language is:

L' = {⟨M⟩ | M accepts
at least five strings }.

How would you
categorize it on the

Lava Diagram?

Quick check: A very
similar language is:

L' = {⟨M⟩ | M accepts
at least five strings }.

How would you
categorize it on the

Lava Diagram?

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

● Example languages:
● The complements of undecidable RE

languages.
● EQTM = {⟨M1, M2⟩ | where (ℒM1) = (ℒM1) }

● {⟨M⟩ | M loops on at least five strings }
– Note that we can write a verifier for the

language {⟨M⟩ | M accepts at least five
strings }, using the certificate
⟨w1,n1,w2,n2,w3,n3,w4,n4,w5,n5⟩, which is a
mouthful, but still finite.

Quick check: A very
similar language is:

L' = {⟨M⟩ | M accepts
at least five strings }.

How would you
categorize it on the

Lava Diagram?

Quick check: A very
similar language is:

L' = {⟨M⟩ | M accepts
at least five strings }.

How would you
categorize it on the

Lava Diagram?

The Language L
D

● LD = {⟨M⟩ | M does not accept ⟨M⟩ }

 = {⟨M⟩ | ⟨M⟩ ∈ (ℒM)}

● This is a classic example of an unrecognizable
language.

● To see why we can’t build a TM for this
language, ask yourself:

● If you did build a TM for LD, called MLD,
would MLD accept ⟨MLD⟩?

Happy Story Time

In a certain isolated town, every house has a
lawn and the city requires them all to be
mowed. The town has only one gardener,

who is also a resident of the town,
and this gardener mows the lawns of residents

iff they do not mow their own lawn.

True or false: The gardener mows their own lawn.

Happy Story Time

In a certain isolated town, every house has a
lawn and the city requires them all to be
mowed. The town has only one gardener,

who is also a resident of the town,
and this gardener mows the lawns of residents

iff they do not mow their own lawn.

True or false: The gardener mows their own lawn.

The Language L
D

● LD = {⟨M⟩ | M does not accept ⟨M⟩ }

 = {⟨M⟩ | ⟨M⟩ ∈ (ℒM)}

● This is a classic example of an unrecognizable
language.

● To see why we can’t build a TM for this
language, ask yourself:

● If you did build a TM for LD, called MLD,
would MLD accept ⟨MLD⟩?

The existence of a TM
for L

D
 creates a

contradiction
(paradox), so that’s
our proof that a TM
for L

D
 cannot exist.

The existence of a TM
for L

D
 creates a

contradiction
(paradox), so that’s
our proof that a TM
for L

D
 cannot exist.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

