The Lava Diagram
(Wrap-Up of
Undecidability)

RE

(Lava Diagram Problem Tips)

How do you
identify an

Regular
Languages

RE
language?

HALT

All Languages

RE

(Lava Diagram Problem Tips)

* You've seen two examples of RE (but not R)
problems so far: A;,,, HALT. They both have this

form:

. = {{M,w) | /* something about M’s behavior
on w */}

* You've also seen how we used the Trickster
approach to prove both are undecidable (not in R).

* You may have found yourself thinking, “Couldn’t 1
always just use Trickster on any language of TMs
to show it’s undecidable?” And the answer, in fact,
is yes! (with a couple caveats)

Rice’s Theorem

(Lava Diagram Problem Tips)

* Any language that consists of strings that are TM code,
and filters those TMs based on a criteria that has anything
to do with the TM'’s language or behavior, is undecidable.*

« * In other words, not in R; at best in RE, maybe not even that.

« Meaning languages matching these sorts of templates will
always be undecidable:

L = {{M,w) | /* something about M’s behavior on w */}
« L = {{M) | /* something about M’s behavior */}
« L = {(M) | /* something about M’s language */}

« L = {{M,, M,) | /* something comparing M, and M,’s
languages or behaviors */}

« Example criteria: “M accepts at least one string,” “M’s language
is finite,” “M loops on w”

Rice’s Theorem

(Lava Diagram Problem Tips)

Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM'’s language or behavior, is undecidable.

Caveat 1: not all languages of the form L = {(M) | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

« L, = {{M,w) | the string (M) has more a’s than the string w}
« [, = {{M) | the string (M) has odd length}

e Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just 8 and X*, respectively). Rice’s Theorem doesn’t
apply unless the criteria actually “filters” some in/some out.

Rice’s Theorem

(Lava Diagram Problem Tips)

Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM'’s language or behavior, is undecidable.

Caveat 1: not all languages of the form L = {(M) | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

« L, = {{M,w) | the string (M) has more a’s than the string w}
« [, = {{M) | the string (M) has odd length}

e Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just 8 and X*, respectively). Rice’s Theorem doesn’t
apply unless the criteria actually “filters” some in/some out.

Quick check:
How would you
categorize L in

the Lava Diagram?

Rice’s Theorem

(Lava Diagram Problem Tips)

Any language that consists of strings that are TM code, and
filters those TMs based on a criteria that has anything to do
with the TM'’s language or behavior, is undecidable.

Caveat 1: not all languages of the form L = {(M) | /* criteria */} are
undecidable; only when the criteria filters based on the TM’s language
or behavior.

Questions relating purely to the text of the code, and not its behavior
when run are generally decidable. Decidable examples:

« L, = {{M,w) | the string (M) has more a’s than the string w}
« [, = {{M) | the string (M) has odd length}

e Intuition: You don’t need to try running the TM M to see how many
a’s its code has or that its code is an odd-length string.

Caveat 2: The criteria can’t be true of zero TMs or all TMs (those
languages are just 8 and X*, respectively). Rice’s Theorem doesn’t
apply unless the criteria actually “filters” some in/some out.

Quick check:
How would you
categorize L, in

the Lava Diagram?

Beyond RE

How Many Problems Are
Outside the Reach of Turing
Machines?

* It’s sad to think about problems that no TM
can even recognize! How many are there?
Hopetully only a few!

« A TM is fundamentally just a string (a piece
of code). Let’s say we can interpret any
string as a TM (if not syntactically correct
according to some TM code system, we’ll just
say it is a TM that always rejects).

» So the number of TMs that exist is |2*| (the
count of all possible strings).

How Many Problems Are
Outside the Reach of Turing
Machines?

* It’s sad to think about problems that no TM
can even recognize! How many are there?
Hopefully only a few!

« A TM is fundamentally just a string (a piece
of code). Let’s say we can interpret any
string as a TM (if not syntactically correct
according to some TM code system, we’ll just
say it is a TM that always rejects).

» So the number of TMs that exist is |2*| (the
count of all possible strings).

Quick check:
How many
languages are
there? Express as
the cardinality of
some set.

How Many Problems Are
Outside the Reach of Turing
Machines?

» Sadly, Cantor’s Theorem says |Z*| < | 2*]).

* Not nearly enough Turing machines to go
around for all the languages that exist.

* So there are many problems (languages) that
we can’t solve with TMs.

What is

Regular
Languages

outside RE?

HALT

All Languages

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

 Languages L that are outside RE are
those where:

 We cannot even build a recognizer TM M,
where AM) = L.

« We cannot build a verifier for L.

- i.e., there is no finite-length certificate/hint
that proves a string w is in L.

* Fun fact: this class includes all the
complements of undecidable RE languages.

Regular
Languages

HALT

All Languages

What makes
a language
non-RE?

In our discussion of
verifiers, we’'ve
brushed up against
one reason a
language could be
unverifiable: it’s
inherently hard to
provide a piece of
evidence to prove a
negative.

Regular
Languages

HALT

*x

HALT

All Languages

What makes
a language
non-RE?

In our discussion of
verifiers, we’ve
brushed up against
one reason a
language could be
unverifiable: it’s
inherently hard to
provide a piece of
evidence to prove a
negative.

The complements
of undecidable
RE languages are
always outside of
RE.

What makes

* a language
A non-RE?

In our discussion of
verifiers, we’ve
brushed up against
one reason a
language could be

Certificate (hint): n,
the number of steps of
M(w) execution until we
will observe M halt and
accept or reject w.

unverifiable: it’s
inherently hard to
provide a piece of
evidence to prove a
Certificate (hint): n, the HALT negative.

number of steps of M(w)
execution until we *
observe...what? Not
halting?? A step count
doesn’t work. :-(

The complements
HALT of undecidable
RE languages are

always outside o
All Languages Y RE. 4

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

 Example languages:

 The complements of undecidable RE
languages.

« EQn, = {{M,, M,) | where AM,) = AM,) }
« {{M) | M loops on at least five strings }

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

 Example languages:

 The complements of undecidable RE Q}liplk Clheck: A very
similar language is:

languages. L' = {{(M) | M accepts

« EQ;y, = 1{M,, M,) | where AM,) = AM,) } at least five strings }.

. How would you
[= {{M) | M loops on at least five strings } | categorize it on the

Lava Diagram?

The Class Unrecognizable
(Lava Diagram Category “All Languages”)

 Example languages:

 The complements of undecidable RE Quick check: A very
languages similar language is:

L' = {{M) | M accepts
. E’QTM — {(MP Mz) | where G%Ml) = Q?(Ml) } at least five strings }.

. How would you
* {{M) | M loops on at least five strings }

categorize it on the
- Note that we can write a verifier for the o agTar
language {{M) | M accepts at least five
strings }, using the certificate
(w,n,,w,,n,,w,,n,w,n,w.,n:, which is a
mouthful, but still finite.

The Language L

« L, = {(M) | M does not accept (M) }
= {{(M) | (M) € AM)}

« This is a classic example of an unrecognizable
language.

* To see why we can’t build a TM for this
language, ask yourselt:

o If you did build a TM for L, called M,,,
would M, , accept (M,)?

Happy Story Time

In a certain isolated town, every house has a
lawn and the city requires them all to be
mowed. The town has only one gardener,

who is also a resident of the town,
and this gardener mows the lawns of residents
iff they do not mow their own lawn.

Happy Story Time

In a certain isolated town, every house has a
lawn and the city requires them all to be
mowed. The town has only one gardener,

who is also a resident of the town,
and this gardener mows the lawns of residents
iff they do not mow their own lawn.

True or false: The gardener mows their own lawn.

The Language L

« L, = {(M) | M does not accept (M) }
= {{(M) | (M) € AM)}

« This is a classic example of an unrecognizable

language.

* To see why we can’t build a TM for this
language, ask yourselt:

o If you did build a TM for L, called M,,,
would M, , accept (M,)?

The existence of a TM
for LD creates a

contradiction
(paradox), so that’s
our proof that a TM
for LD cannot exist.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

